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Waveguide and Cavity Oscillations in the
Presence of Nonlinear Media

DAN CENSOR

Abstract —This paper deals with the problem of waves in metallic

structures containing nonlinear media. Problems of this kind are encoun-

tered in the analysis of microwave devices operated at high power levels, or

when the constitntive parameters of nonlinear materials are investigated by

means of microwave measurements.

The Volterra series are the functional analog of the well-known Taylor

series for functions. This mathematical tool is adequate for a description of

constitntive relations in dispersive nonlinear media. For practical purposes,

we deal with weak nonlinearity, such that the series can be truncated. Weak

nonlinearity also denotes the absence of shock waves, such that afl spectral

components of a wave are phase matched (i.e., propagate with the same

phase velocity). The main effect of nonlinearity are the production of

harmonics, and the dependence of the dispersion eqnation on the field

amplitudes. These are incorporated into the present model.

The development of the present model involves some henristic assump-

tions which facilitate the derivation of an algebraic dispersion equation.

Therefore, the range of validlty of the present model will have to be

determined by experimental results, when these are available.

In waveguides, and cavities in particular, the question of the effect of the

geometry and boundary conditions arises, too. It is shown here that

nonlinearity induces harmonic modes in rectangular structures. In cylin-

drical and spherical structures, the geometry affects the budget of harmon-

ics and produces mode coupling.

T HE ANALYSIS OF Volterra systems (weakly nonlin-

ear systems with memory) in communication theory

was introduced by Wiener in 1942. For relevant literature

see Bedrosian and Rice [1], and Bussgang, Eherman, and

Graham [2]. The rapid progress in nonlinear optics at-

tracted attention to the corresponding problems in nonlin-

ear wave propagation (e.g., see Caspers [3]). Curiously

enough, somewhere along the way the awareness of the fact

that we are dealing with Volterra series has been lost (see

Caspers [3], Akhmanov and Khokhlov [4], Schubert and

Wilhelmi [5], and Censor [6]). The importance of Volterra’s

original work [7] for the analysis of weakly nonlinear

dispersive systems has been recognized recently by

Franceschetti and his coworkers [8]–[14] in a series of

papers dealing with the theory and application of the

Volterra series, and which contain many early references.

The systematic application of the Volterra series to prob-

lems of wave propagation in weakly nonlinear media is a

logical approach, prescribed by the fact that these series

are the functional analog of the Taylor series for functions.

Recently, this tool has been applied to ray tracing [6],

Manuscript August 8, 1983; revised November 27, 1984.
The author is with the Department of Electrical and Computer En-

gineering. Ben-Gurion Uruversity of the Negev, Beer-Sheva, Israel 84105.

nonlinear wave mechanics [15], solitary wave propagation

[16], [17], and nonlinear scattering theory [18]. Recent

analytical results and applications are reported by Dalpe,

Kent, and Weiner [19]. For completeness, the fundamental

theory used here will be summarized.

Presently, propagation in weakly nonlinear media is

applied to problems of guided waves and cavity oscilla-

tions. The motivation for this study is threefold. Firstly,

classical results for rectangular and circular waveguides,

and similar cavity configurations, are relatively easy to

extend to the case of nonlinear media. At the time when

relevant experimental results will be available, the present

results will serve to check the theory used here, which

involves some yet unjustified heuristic assumptions. Sec-

ondly, for some devices used to date, linearized theory only

is used for low power levels. The present method provides

nonlinear corrections. And thirdly, just as microwave de-

vices are presently used to investigate the linear properties

of various materials, the present theory provides the basis

for diagnosing the nonlinear properties. This kind of prob-

lem also seems to be of interest in connection with nonlin-

ear acoustics [20].

Starting with a summary of the relevant theory, the

propagation of plane periodic waves in unbounded media

is considered. The question of the validity of superposition

of nonphase-matched waves is discussed and general solu-

tions obtained. The results are applied to canonical wave-

guide and cavity problems. The case of rectangular wave-

guides and cavities is conceptually and mathematically

simpler. It shows the production of harmonics and the

associated modes, as well as the effect of the amplitude on

the dispersion equation. The problems of circular, cylin-

drical, and spherical systems shows what phenomena should

be expected (according to the present theory) when curved

boundaries are present. It is shown that curved boundaries

might suppress harmonic production in certain cases. Also,

nonlinearity acts as a mode-coupling mechanism, as shown

below. These are interesting phenomena which will have to

be tested experimentally.

II. GENERAL THEORY OF SELF-INTERACTION

The problem is considered in the frame of elec-

trodynamics in sourceless domains, governed by Maxwell’s

equations

vxE+dB/dt=O vxH–dD/dt=O

v.D=O v- B=(). (1)
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For reasons explained below, periodic (as opposed to

harmonic) plane-wave solutions are considered

E, = ~ E~,el@, 6=k. x–ut (2)

and similar expression for B,, H,, D,, where i =1,2,3, de-

notes Cartesian components, q is the order of the harmonic,

(3 is the phase of the plane wave, E~, the amplitude of the i

component of the q th harmonic, k is the propagation

vector, and x the position vector. Substitution of (2) etc. in

(1) yields

kxEq–d$=O kxHq+aDq=O (3)

and v. Dq = O, v ollq = O are identically satisfied. Before

going on, a few observations are in order. The periodic

solution, as in (2), has been stipulated in order to include

harmonic production due to distortion by the nonlinear

medium. The amplitudes Eq,, Dq,, H~i, and Bq, are not

arbitrary but determined by (3) and the complicated con-

stitutive relations to be introduced below. It is noted that

solutions of the kind in (2) already assume phase matching,

i.e., all harmonics have identical phase velocities co/ Ik 1.We

are dealing with weakly nonlinear media, in which the

creation of shock waves is excluded. This is adequately

described by (2), because shock formation requires that

different spectral components propagate with different

phase velocities. Phase matching also means that harmon-

ics are produced in a coherent manner, i.e., local nonlinear

interactions, although they might be weak, produce waves

which interfere constructively, producing significant ampli-

tudes of harmonic waves.

In general, nonlinear constitutive relations are given by

D(E), B(H), but for weak nonlinearity, a hierarchy is

assumed

~=D(l)+~(2)+...+D(”)+... (4)

and similarly for B. In (4), it is assumed that the leading

terms are predominant, and for practical purposes the sum

(4) can be truncated. The term D(”) in (4) is defined as the

n th term of a Volterra series

nonlinear term D ‘2) upon substitution of (2) yields

ll)’)(x, t)=~~e l(q+q’)*(X’Z)c:;~(qk, q(.o, q’k, q’ti)E~~Eq,~
~ q’

(8)

and D ‘“)(x, t) involves n summations [6]. If periodic Dy)

= XYDY,ely@ is stipulated and substituted in (8), and terms

satisfying y = q + q‘ are regrouped, then we have

where we define

iyk(yk, ycd) = ~ ,(2) ‘wE@k
‘Jk EYJEYk “

(lo)

4>q’=Y–q

Originally c(“j in (5) (hence, also the 4 X n-dimensional

transform in (8)) are defined as parameters of the medium,

independent of field amplitudes. Consequently, (10) etc.

display if”) as amplitude dependent; hence, the notation

(9) seems to be useless. What is the point of defining

characteristic parameters if it turns out that they depend

on the variable fields? What we are trying to achieve, and

this is a crucial step which has to be tested experimentally,

is the following. A plane wave injected into a nonlinear

medium will be distorted, i.e., it will undergo self interac-

tion, until a periodic wave is present satisfying Maxwell’s

equations (3) and the constitutive relations (4) and (5), and

the corresponding relations B(H). The budget of ampli-

tudes of various harmonics depends on the original excita-

tion and the properties of the medium. In other words, if a

periodic plane wave is injected into the medium with

exactly the right amplitudes and relative phases of harmon-

ics, this wave will propagate in the medium without modifi-

cation. The assumption implied in (9) is that the ratios of

amplitudes are insensitive to incremental variation, i.e., if

all the amplitudes are increased by a small factor, the ratio

in (10) becomes

kEqJEq,k AEqJ AEq,k AE7J AE,k

EyJEyk 1+ E~J + ~ “ ~ – Ey~
)

— (11)

. . . Xn, L) EJ(X-X1, t –L)”” .E,(x–xn, t–tn)] (5)

where indices i, j,. . . . v denote Cartesian components and and ideally the expression in parentheses in (11) equals 1.
~(n), j. . ~ is a tensor (Einstein’s summation convention is As long as the increments in (11) are small enough to

assumed). Thus, for n =1, we obtain the linear case, which justify this approximation, (9) is valid as an approximation.

on substitution of (2) yields According to (4) and (9), we have for each harmonic q

for the q th harmonic, where e~~}(qk, qti) is the four-dimen- (12)

sional transform according to
and if considered as an expansion of D(E) about E = O,

(27) “/d3x1dt1cf~](x1, t,) e-zqo(X’”l) (7)
then <~:!.. , are the values of the derivatives in a Taylor

expansion

between infinite limits of integration. The parameters c~,~) 1 a“D,<(n) (13)
of (5) are constants characterizing the system. The first

,J. ..v= ~!8EJ...JEv”
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Many studies heuristically start with (12), which is not as

systematic as the present approach. The systematic ap-

proach through the tool of Volterra’s series clearly displays

=(” ) as only approximately constant, as opposed to t ‘“).

At this point, (9) etc. is substituted in (3), and for q =1,

this yields

(k xE)l-ap:)H, -up$;~H,Hk - ..0 =0

(k x H)i+ @)E, + L@;@,Ek + . . . =0 (14)

where the index q = 1 has been suppressed, and similar

expressions exist for higher harmonic waves. The six homo-

geneous, algebraic, nonlinear scalar equations (14) define

the physical problem at hand. The system (14) can be used

to deliver an amplitude dependent dispersion equation, as

explained previously [6]. To clarify this, we shall handle the

situation in a somewhat primitive way. The second equa-

tion (14) can be manipulated to derive expressions for

HI, Hz, H3 in terms of El, Ez, Es, and these are sub-

stituted in the first line of (14), resulting in three scalar

equations on El, E2, Eq. In each of these equations, there

are terms that do not involve El, say; hence, the set of

equations may be written in the form

E1fl(E1, Ez>Eq)=gl(Ez>Eg)

E1f2(El, E2>E3)=g2(E2>E3)

E1f3(E1, E2, E3)=g3(E2, E3) (15)

where f and g are arbitrary functions of the arguments,

and in some degenerate cases not all the arguments will be

present. By elimination of the factors El on the left, in

(15), we obtain two scalar equations which have the general

form

EQh~(E~,EQ,Eg)=Zl(El,Eq)

E2~2(&, E2, E3)=z2(El, E3) (16)

and finally, by dividing the equations in (16), one equation

of the form

E.3~(E~, Ez, E3)=0. (17)

Hence, for the nontrivial solution E3 # O in (17) prescribes

a dispersion relation u = O, which involves k, U, and field

amplitudes. This procedure is equivalent to writing (14) in

matrix form G, = F,,A~ = O, r,s =1,. ..,6, where A = (A,)

= (El, Ez, E3, Hl, Hz, H3) k a six component vector, and
by imposing the condition of volubility det (F,.)= O, the
dispersion equation

F(k, u, A)=O (18)

is obtained. The fact that (18) involves amplitudes is a

characteristic feature of the nonlinear problem. The corre-

sponding equations (14) and (18) for higher harmonics are

not independent systems of equations, because (14) and

(18) already establish a relation between k and u. Hence,

the equations for higher harmonics can only serve to

determine the (complex) amplitudes of the harmonic waves.

The details are not very important to the main line of our

subject.

At this point, we have sufficiently summarized the gen-

eral theory in order to discuss metallic guides and reso-

nators. We begin, in the next section, with the relatively

simple problem of rectangular guides and cavities.

III. RECTANGULAR WAVEGUIDES AND RESONATORS

In order to demonstrate the feasibility of using the above

theory for rectangular waveguides and cavities, a simple

isotropic constitutive relation is used. This class of prob-

lems is still general enough to display typical aspects of the

nonlinear class of problems. Accordingly, we define a

dielectric medium with scalar constant K and

D, = C:;)EJ + i::~E,E~ + . . .

= ●tl)E, + ~(2)(E1)2+ E(3)(E1)3+ . . . (19)

where for expressions containing scalar 6(”), the summa-

tion convention is inapplicable. This means that Z\}) is

diagonalized by multiplying by a Kroenecker d,,, and the

diagonal elements made identical, and a corresponding

treatment for the higher order tensors. Equation (19) is

compacted in the form

D=~,ff(E)E (20)

where it is understood that the field E in c,ff (E) is the

field E, related to D,. Manipulating Maxwell’s equations

(3) yields (q= 1)

kxkx E+u2pt~ff(E)E=0.

This medium admits transversal waves for which the wave

equation becomes

[kQ-~2pCeff(E)] E=0. (21)

Hence, the expression in brackets is the dispersion equa-

tion (18).

The main difficulty in proceeding to analyze the present

problem is that, unlike the linear case, the representation of

the total field as a superposition of plane waves requires

justification. In general, superposition is not valid in non-

linear media. However, in weakly nonlinear systems as

discussed here, it appears plausible to assume that only

phase-matched nonlinear induced harmonics will be pro-

duced with significant efficiency. This implies that in

isotropic media as considered here, the interaction of non-

colinear waves will be negligible. This heuristic assumption,

still requiring experimental support, salvages the linear

method of superposition to the extent that new solutions

may be constructed from sums of plane waves which are
not phase matched.

Accordingly, we take the formulas for rectangular wave-

guides, e.g., as given by Collin [21], recast them in terms of

plane waves, and replace k, Q with qk, qti, respectively, to

obtain the harmonics. Thus, the fields are given by

Field TE TM

Hz CXCYe o

EZ o SXSYe

EX Zh.n~Hv A CXSYe

Ey – Zh,n~HX BSXCYe

HX – ASXCYe – EY/Z,, nM

HY – BCXSve ‘x/ze, nm

(22)
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where in the above shorthand notation CX = cos ( qn nx/a ),

and SX implies sine of the same argument, and CY =

cos ( qm ~y/b ), and SY follows; a and b are the dimensions

of the guide in the x and y directions, respectively, q is the

number of the harmonics, e denotes eIq~.mz– @i, where

q~n~ is the pertinent component of qk in the z-direction,

A denotes i&~n~/ak~, ~~ and for B replace n/u with

m/b, k~nm = (nn/a)2 +(m~/b)2, and “~~~ = k2–k~,n~.
The impedances are given by Zk, ~. = kZO//3n~, -Z,, n~ =

&~ZO/k, and ZO = tip/k, and, for the present case in

particular, ZO = p,/c.ff (E), displaying the dependence on

the amplitude of the first harmonic.

The following characteristics of the nonlinear problem

are therefore apparent from (22): since nonlinearity pro-

duces harmonics, the fields of the fundamental mode n, m

appear together with harmonic modes (i.e., at frequencies

qo) qn, qm. Since phase matching is built into the model

from the outset, all these modes propagate with identical

phase and group velocities. Any attempt to change the

balance of harmonics, e.g., to filter out some harmonic or

to add a wave at a certain harmonic frequency, results in a

‘(”) in (10); hence, there is achange of the parameters c

reshuffling of the whole spectral content of the wave. To

deal with ~(n), which are susceptible to these changes, is the

price we have to pay for simplifying the nonlinear model

from (8) to (9). The second main result is the dependence

of parameters on ●,ff (E); hence, the amplitude of the

excitation affects the wavelength, impedances, etc. It is

therefore possible to regulate certain parameters, e.g., cutoff

frequencies, by changing the amplitude. This property is

usually referred to in nonlinear optics as nonlinearity-

induced transparency.

Waveguides containing nonlinear media as part of their

structure can be analyzed by the above formalism. Con-

versely, nonlinear media can be analyzed by inserting them

into waveguide systems.

The extension of (22) to rectangular resonators is quite

straightforward. To the waves in (22), add (with proper

signs) backward propagating waves such that metallic

boundary conditions will be satisfied at z = O, d. Normal-

ized formulas have the form

Field TE TM

H= CXCYSze o

E= o SXSYCze

EX – Z~, nmBCXSYSze iA CXSYS=e (23)

EY Zh, ~~ASXCYSZe iBSXCYSze

HX iA SXCYCze

HY iBCX SYCze

where e stands for e– ‘@”

cos(ql~z/d), 1=1,2,3, . . .

– WCycze/ze3 .m

A CXSYCze/Z,, ~~

and S= = sin(qlvz/d ), C, =

Each of the plane waves con-

tained in’ (23), which can be explicitly obtained by recast-

ing the sin and cos as functions in exponentials, has k
vector components kX = + nn/a, kY = + inn/b, k==

+ lm/d with the appropriate sign. Hence, we are dealing

with eight non-codirectional waves that can be superposed,

since they are not phase matched. Hence, the dispersion
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relation (18) can be written as

(24)

which is amplitude dependent. Consequently, the reso-

nance frequency is also amplitude dependent. This is the

key to measuring

~,ff(E) = k2/(po2). (25)

For small amplitudes, the nonlinear effect is negligible. As

the power increases, the nonlinear correction terms will

start to play a role and can be computed from the change

in the resonance frequency.

IV. CIRCULAR CYLINDRICAL STRUCTURES

It will be shown that this class of canonical problems is

not merely a complicated mathematical extension of the

rectangular case, in which Bessel functions replace the

trigonometric expressions. In fact, if we adopt the general

theory given above, then we find that curved metallic

structures, as opposed to rectangular geometries, will usu-

ally suppress phase matching, and consequently also sup-

press coherent nonlinear interaction.

The general treatment of linear vector waves is given by

Stratton [22], who cites original work by Hansen. For

completeness, and since the subject is mathematically more

complicated than the rectangular case, the general theory is

summarized. The general expressions for nonsingular fields

in cylindrical coordinates [22, see p. 361] is

Field TM TE

E, ihXand+n/dr – pa/rXnb.#.

E+ (- h/r)Dza.t. – icopzbn 8#n/&

E= A’Zan+. o

H, (k2/par)Xna.*m ihEbni3$n/&

H, (ik2/p@)Xa.d$./dr (- h/r)Xnb.$.

Hz o A’Zbn+n

(26)

where

~~ = eln~Jn(~r)el’z-iot (27)

In denoting the nonsingular Bessel functions and A’= k 2

– h 2, the summation extends on – w < n <co and an, b.

are coefficients. The structure (26) and (27) can be split

into even and odd parts by defining

(28)

In order to express (26) in terms of (28), note that in in

(26) corresponds to 8/8+, and apply this operator to (28)
(see Stratton [22, p. 395]). The orthogonal vector wave

functions Al and N are defined in Stratton [22, p. 392 ff.]

&fn=(v’+n)X2 v xMn=kNn

v xNn=kMn. (29)

The TE E field in (26) is recognized as i~pZbnA4n, and the

mate H field corresponds to kXbnNn; the TM I+ field is

recognized as ( – ik 2/pc)XanMn and the mate E field is
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given by (k~/c)Za~N~. Relevant to our subject is the

representation of M and N in terms of sums (integrals) of

plane waves

M.= ~~’”(ik x~)e’’rc”s(’-’)+znhz’’”’d~’d~
.—n

Nn=L J(2“ kf–h)%)e
27T (j

‘A’cO’(p-@)+l”p+ ’h’-’wr d/3.

(30)

(See Stratton [22, pp. 396, 397]).

Thus far the linear problem has been summarized. Strictly

speaking, the nonlinear problem does not admit superposi-

tion of plane waves. However, making the same assump-

tion as before, that it is legitimate to superpose waves

which are not phase matched, structures like (30) are

admissible. But exactly this argumentation also leads to the

prediction that the significance of nonlinear interaction

will be very small, since for each amplitude ik X Ze ‘n$ or

(kf – h~)e’”p, the nonlinear dispersion equation (18) yields

a different value for k, and in the absence of some con-

certed effort of all the plane waves in the integrand (30),

the effect of nonlinearity will be negligible. One way of

dealing with this difficulty is to assume the presence of

many modes, and let the amplitudes affect the dispersion

equation such that a combined coherent effect will emerge.

Thus, we define the E field corresponding to (30) as

1

–12?r ()
‘Vdjle ‘ArcOs(B-+’+zh’-’or~ (P) (31)

where E(~) = XnEn( ~ ) ei”~ stands for a sum of amplitudes

of various modes. Assuming again the isotropic medium as

in (19) and (21) prescribes

1
–J B21r (J

2nd e “’cOs(B-@)+’’’-{ k2E(~)(ti2t d2/.d’)E(fl)

—ti’pct2jE2(~)E( ~)-u2yct3)E3(~) i(~)- ~~~} =0.

(32)

What we are trying to do now is to find conditions for the

vanishing of the expression in braces in (32) for all /3. For

simplicity, let us assume first that only c(l) and c(2) are

nonzero. The condition for the vanishing of the braces in

(32) for all ~ prescribes

(k’ - u’pc(’))~bne’”~ - u’pc(’)~ ~bn,b,l,,e’(”’+’”)~ = O
n n’ ~/r

(33)

for the TE field, for example. Hence, using the orthogonal-

ity of e“n~, (33) yields

(k2 - U2p@)bn - Q’pt’) ~ bnrbn,, = O. (34)
~f+nl,=n

For each n, an equation of the type (34) is obtained, and

since all factors except k are given beforehand, each equa-

tion yields a value k.. Since i is determined by boundary

conditions, (34) in general means that different kn are

associated with different h ~; hence, our assumption (31)

(with one h applying to all modes n) is invalid. Still, our

argument may be applied as an approximation. If, for
c(2) = () a value k ~ is computed, then the nonlinear effect is>

Ah fl=h~-hO. (35)

If Ah ~ is small compared to h ~, then the phase mismatch

e ‘~hJI’ will be negligible for some range of z, for which h in

(31) can be replaced by h ~. Naturally, this means that for

high-order modes, where h is getting smaller compared to

A, the approximation is increasingly improved. This is to

be expected, because for higher modes, corresponding to

larger arguments in the Bessel functions, the asymptotic

representation of the Bessel functions constitutes a good

approximation. This is tantamount to saying that as A

increases, the waves become more and more similar to

plane waves. The above argument shows the interaction of

modes, which also means that if one mode n is injected

into the system, then powers of e ‘“~ will produce higher

modes, whose amplitudes contain the nonlinear c(n) as

factors. Subject to the restrictions mentioned above, the

field in circular cylindrical waveguides can be represented

by (27) and (28) with the proper modifications, i.e., h, k,

are replaced by h ~, kn, obtained from (34) and the

boundary condition on A, according to k;= A2 + h ~. Simi-

larly to the previous case of rectangular cavities, here too

the resonance frequency of a cylindrical cavity will depend

on the amplitude of the injected signal. For this case, h is

determined by the length z of the cavity, and the only

degree of freedom is offered by ~. If only one mode is

present, which we can represent by + n, lb. I = lb_ ~1, then

the same argument that led to (34) now yields, for ~(3J, a

relation of the form

(k2 - @.@)bn - &pc(3)3b: = O (36)

which is somewhat oversimplified, but shows the depen-

dence of W. on the amplitude, represented hereby bn.

Thus far only the fundamental frequency has been con-

sidered. Inasmuch as we were able to recast the fields in

plane-wave integrals, it is clear that for frequency go we

will not have qk (i.e., qA and qh ) to maintain the phase-

matching requirement. However, if the boundary condi-

tions prescribe J.( Au)= O or (d/da) .ln( Aa ) = O, for TM

and TE modes, respectively, for a guide of radius r = a,

then in general J.( qAu), (d/da) J. (qXa ) will not vanish

due to the fact that the zeros of the functions are not

evenly spaced. This means that harmonic production is
suppressed in cylindrical waveguides and cavities. For

high-order modes, the zeros become increasingly evenly

spaced, because the waves resemble more and more plane

waves. Hence, for large Au, the harmonic waves will be

present.

V. SPHERICAL STRUCTURES

At this stage, where a lot of experimentation is needed to

check the fundamentals of the theory, there is no point in

bringing in all the heavy machinery for the scalar and

vector spherical wave functions. These are comprehensively

covered by Stratton [22, see ch. 7]. The ideas are identical,

and therefore we expect the same conclusions. The repre-
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sentation of spherical vector waves in terms of plane-wave

integrals [22, pp. 416, 417], and the application of disper-

sion equations similar to (33) and (34) will lead to the

results of kfl ~ for mode n, m which constitutes an ap-

proximate solution, increasingly improving as n increases

(on account of the spherical Bessel functions behavior for

large arguments). The conclusions for the behavior of

harmonics follows the same lines.

V. SUMMARY AND CONCLUSIONS

The problem of nonlinear wave propagation is extremely

complicated, physically and mathematically. The present

study concentrates on weak nonlinear effects which pro-

vide the correction terms for the leading linear results. This

is described mathematically by a model based on the

Volterra series, and plane-wave dispersion relations are

obtained by assuming periodic solutions. This theory is

briefly recapitulated. Applications to rectangular wave-

guides and cavities are given. This problem is easy because

the linear fields are given as combinations of a few (at most

eight, for the fully developed case of a rectangular cavity)

plane waves. Once the stipulation is made that nonphase-

matched waves do not interact, the extension to the nonlin-

ear case is straightforward. Results are given, and practical

aspects of analyzing nonlinear devices, or measuring the

properties of nonlinear media, are discussed.

The presence of curved metallic boundaries is shown to

suppress nonlinear interaction and harmonic production.

‘This effect is increasingly pronounced as the waves depart

more and more from plane waves, i.e., when the curvature

of wavefronts increases. Cylindrical waves are considered

in some detail, the treatment for spherical structures “is only

delineated, but the above conclusions seem to be valid in

general.

There are many heuristic assumptions in the basic the-

ory, and experimental data is necessary to check it: valid-

ity.
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