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Waveguide and Cavity Oscillations in the
Presence of Nonlinear Media

DAN CENSOR

Abstract —This paper deals with the problem of waves in metallic
structures containing nonlinear media. Problems of this kind are encoun-
tered in the analysis of microwave devices operated at high power levels, or
when the constitutive parameters of nonlinear materials are investigated by
means of microwave measurements.

The Volterra series are the functional analog of the well-known Taylor
series for functions. This mathematical tool is adequate for a description of
constitutive relations in dispersive nonlinear media. For practical purposes,
we deal with weak nonlinearity, such that the series can be truncated. Weak
nonlinearity also denotes the absence of shock waves, such that all spectral
components of a wave are phase matched (i.e., propagate with the same
phase velocity). The main effect of nonlinearity are the production of
harmonics, and the dependence of the dispersion equation on the field
amplitudes. These are incorporated into the present model.

The development of the present model involves some heuristic assump-
tions which facilitate the derivation of an algebraic dispersion equation.
Therefore, the range of validity of the present model will have to be
determined by experimental results, when these are available.

In waveguides, and cavities in particular, the question of the effect of the
geometry and boundary conditions arises, too. It is shown here that
nonlinearity induces harmonic modes in rectangular structures. In cylin-
drical and spherical structures, the geometry affects the budget of harmon-
ies and produces mode coupling.

HE ANALYSIS OF Volterra systems (weakly nonlin-

ear systems with memory) in communication theory
was introduced by Wiener in 1942, For relevant literature
see Bedrosian and Rice [1], and Bussgang, Eherman, and
Graham [2]. The rapid progress in nonlinear optics at-
tracted attention to the corresponding problems in nonlin-
ear wave propagation (e.g., see Caspers [3]). Curiously
enough, somewhere along the way the awareness of the fact
that we are dealing with Volterra series has been lost (see
Caspers [3], Akhmanov and Khokhlov [4], Schubert and
Wilhelmi [5], and Censor [6]). The importance of Volterra’s
original work [7] for the analysis of weakly nonlinear
dispersive systems has been recognized recently by
Franceschetti and his coworkers [8]-[14] in a series of
papers dealing with the theory and application of the
Volterra series, and which contain many early references.
The systematic application of the Volterra series to prob-
lems of wave propagation in weakly nonlinear media is a
logical approach, prescribed by the fact that these series
are the functional analog of the Taylor series for functions.
Recently, this tool has been applied to ray tracing [6],
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nonlinear wave mechanics [15], solitary wave propagation
[16], [17], and nonlinear scattering theory [18]. Recent
analytical results and applications are reported by Dalpe,
Kent, and Weiner [19]. For completeness, the fundamental
theory used here will be summarized.

Presently, propagation in weakly nonlinear media is
applied to problems of guided waves and cavity oscilla-
tions. The motivation for this study is threefold. Firstly,
classical results for rectangular and circular waveguides,
and similar cavity configurations, are relatively easy to
extend to the case of nonlinear media. At the time when
relevant experimental results will be available, the present
results will serve to check the theory used here, which
involves some yet unjustified heuristic assumptions. Sec-
ondly, for some devices used to date, linearized theory only
is used for low power levels. The present method provides
nonlinear corrections. And thirdly, just as microwave de-
vices are presently used to investigate the linear properties
of various materials, the present theory provides the basis
for diagnosing the nonlinear properties. This kind of prob-
lem also seems to be of interest in connection with nonlin-
ear acoustics [20].

Starting with a summary of the relevant theory, the
propagation of plane periodic waves in unbounded media
is considered. The question of the validity of superposition
of nonphase-matched waves is discussed and general solu-
tions obtained. The results are applied to canonical wave-
guide and cavity problems. The case of rectangular wave-
guides and cavities is conceptually and mathematically
simpler. It shows the production of harmonics and the
associated modes, as well as the effect of the amplitude on
the dispersion equation. The problems of circular, cylin-
drical, and spherical systems shows what phenomena should
be expected (according to the present theory) when curved
boundaries are present. It is shown that curved boundaries
might suppress harmonic production in certain cases. Also,
nonlinearity acts as a mode-coupling mechanism, as shown
below. These are interesting phenomena which will have to
be tested experimentally.

II. GENERAL THEORY OF SELF-INTERACTION

The problem is considered in the frame of elec-
trodynamics in sourceless domains, governed by Maxwell’s
equations

VXE+dB/dt=0 vXH—-3dD/0t=0

v-D=0 v-B=0.

(1)
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For reasons explained below, periodic (as opposed to
harmonic) plane-wave solutions are considered

o0
— 190
E,= ) E,e%,

g=—0

(2)

0=k -x— wt

and similar expression for B,, H,, D,, where i=1,2,3, de-
notes Cartesian components, g is the order of the harmonic,
¢ is the phase of the plane wave, E,, the amplitude of the i
component of the qth harmonic, k is the propagation
vector, and x the position vector. Substitution of (2) etc. in
(1) yields

kXEq—qu=O kXHq+qu=0

(3)

and v-D, =0, v-B, =0 are identically satisfied. Before
going on, a few observations are in order. The periodic
solution, as in (2), has been stipulated in order to include
harmonic production due to distortion by the nonlinear
medium. The amplitudes E,,, D,, H,, and B, are not
arbitrary but determined by (3) and the complicated con-
stitutive relations to be introduced below. It is noted that
solutions of the kind in (2) already assume phase matching,
i.e., all harmonics have identical phase velocities w/|k|. We
are dealing with weakly nonlinear media, in which the
creation of shock waves is excluded. This is adequately
described by (2), because shock formation requires that
different spectral components propagate with different
phase velocities. Phase matching also means that harmon-
ics are produced in a coherent manner, i.e., local nonlinear
interactions, although they might be weak, produce waves
which interfere constructively, producing significant ampli-
tudes of harmonic waves.

In general, nonlinear constitutive relations are given by
D(E), B(H), but for weak nonlinearity, a hierarchy is
assumed

D=DO+pA4 ... y D4 ...

(4)

and similarly for B. In (4), it is assumed that the leading
terms are predominant, and for practical purposes the sum
(4) can be truncated. The term D™ in (4) is defined as the
nth term of a Volterra series

D,(")(x,t)=fd3x1dt1~--fd3xndtn[sf,"}...,,(x1,t1,

where indices i, j, - -, » denote Cartesian components and
e/, is a tensor (Einstein’s summation convention is
assumed). Thus, for n =1, we obtain the linear case, which
on substitution of (2) vields

DP(gk,qw) =" (qgk, qw) E;(gk, gw) (6)

for the gth harmonic, where €)(gk, gw) is the four-dimen-
sional transform according to

(2W)“4fd3x1dt1£,(3(xl.tl)e_’qa(xl”l) (7)

between infinite limits of integration. The parameters (")
of (5) are constants characterizing the system. The first
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nonlinear term D® upon substitution of (2) yields

DA (x,1) = X" 00 (gk, qo, g’k ¢'0) By, E
9 q

(8)
and D(x,t) involves n summations [6]. If periodic D®
= ZYDY,e’Va is stipulated and substituted in (8), and terms
satisfying y = ¢ + ¢’ are regrouped, then we have

D;?) = El(f/)((‘yk’ Yw)Eijyk (9)
where we define
E E,
€0 (vh,yo)= Y @=UTE (10)
EYJEvk

99=v—¢q

Originally € in (5) (hence, also the 4 X n-dimensional
transform in (8)) are defined as parameters of the medium,
independent of field amplitudes. Consequently, (10) etc.
display € as amplitude dependent; hence, the notation
(9) seems to be useless. What is the point of defining
characteristic parameters if it turns out that they depend
on the variable fields? What we are trying to achieve, and
this is a crucial step which has to be tested experimentally,
is the following. A plane wave injected into a nonlinear
medium will be distorted, i.e., it will undergo self interac-
tion, until a periodic wave is present satisfying Maxwell’s
equations (3) and the constitutive relations (4) and (5), and
the corresponding relations B(H). The budget of ampli-
tudes of various harmonics depends on the original excita-
tion and the properties of the medium. In other words, if a
periodic plane wave is injected into the medium with
exactly the right amplitudes and relative phases of harmon-
ics, this wave will propagate in the medium without modifi-
cation. The assumption implied in (9) is that the ratios of
amplitudes are insensitive to incremental variation, i.e., if
all the amplitudes are increased by a small factor, the ratio
in (10) becomes
EqJE q'k

EYJEYk

AE

4

Eli]

AE,, AE
E, E

YJ

E,
E

Y/

+

(11)

“.xn’tn)Ej(x—.x]_’t—tl)'”Ev(x_x)wt—tn)] (5)
and ideally the expression in parentheses in (11) equals 1.
As long as the increments in (11) are small enough to
justify this approximation, (9) is valid as an approximation.
According to (4) and (9), we have for each harmonic ¢

D,=¢VE +EAEE + - +&" (E---E)+ -

(12)
and if considered as an expansion of D(E) about E =0,
then €, are the values of the derivatives in a Taylor
expansion

v

~(n)
G

(13)
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Many studies heuristically start with (12), which is not as
systematic as the present approach. The systematic ap-
proach through the tool of Volterra’s series clearly displays
€™ as only approximately constant, as opposed to €.

At this point, (9) etc. is substituted in (3), and for g =1,
this yields

(kX E),— op"H — gD HH,— -+ =0

(kXH)i+W€f})Ej+w€g}(EjEk+ cee =0

(14)

where the index ¢ =1 has been suppressed, and similar
expressions exist for higher harmonic waves. The six homo-
geneous, algebraic, nonlinear scalar equations (14) define
the physical problem at hand. The system (14) can be used
to deliver an amplitude dependent dispersion equation, as
explained previously [6]. To clarify this, we shall handle the
situation in a somewhat primitive way. The second equa-
tion (14) can be manipulated to derive expressions for
H,, H,, H; in terms of E,, E,, E;, and these are sub-
stituted in the first line of (14), resulting in three scalar
equations on E|, E,, E,. In each of these equations, there
are terms that do not involve E;, say; hence, the set of
equations may be written in the form

E1f1(E17 E,,E;) = gl(E27 E3)
E1f2(E1’ E,, E3) = gz(Ez’ Es)
E1f3(E1,E2,E3)=g3(E2,E3) (15)

where f and g are arbitrary functions of the arguments,
and in some degenerate cases not all the arguments will be
present. By elimination of the factors E; on the left, in
(15), we obtain two scalar equations which have the general
form

EZhI(El’ E,, E3) = ll(El’ E3)
Ezhz(Ep E,, E3) = lz(Ep Es)

(16)
and finally, by dividing the equations in (16), one equation
of the form

Euu(E,, E,, E;)=0.

(17)

Hence, for the nontrivial solution E; +# 0 in (17) prescribes
a dispersion relation u = 0, which involves k, w, and field
amplitudes. This procedure is equivalent to writing (14) in
matrix form G,= F,A4,=0, r,s=1,---,6, where 4= (A,)
=(E,, E,, E;, H,, H,, H;) is a six component vector, and
by imposing the condition of solubility det(F,,)=0, the
dispersion equation

F(k,w,4)=0

(18)

is obtained. The fact that (18) involves amplitudes is a
characteristic feature of the nonlinear problem. The corre-
sponding equations (14) and (18) for higher harmonics are
not independent systems of equations, because (14) and
(18) already establish a relation between k& and ». Hence,
the equations for higher harmonics can only serve to
determine the (complex) amplitudes of the harmonic waves.
The details are not very important to the main line of our
subject.

At this point, we have sufficiently summarized the gen-
eral theory in order to discuss metallic guides and reso-
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nators. We begin, in the next section, with the relatively
simple problem of rectangular guides and cavities.

IIIL.

In order to demonstrate the feasibility of using the above
theory for rectangular waveguides and cavities, a simple
isotropic constitutive relation is used. This class of prob-
lems is still general enough to display typical aspects of the
nonlinear class of problems. Accordingly, we define a
dielectric medium with scalar constant p and

— =(2
D, =¢VE +EDEE, + ---

RECTANGULAR WAVEGUIDES AND RESONATORS

= ¢WE +e?(E) +ed(E) + ---

(19)
where for expressions containing scalar €™, the summa-
tion convention is inapplicable. This means that € is
diagonalized by multiplying by a Kroenecker §,,, and the
diagonal elements made identical, and a corresponding
treatment for the higher order tensors. Equation (19) is
compacted in the form

szeff(E)E (20)

where it is understood that the field E in e (E) is the
field E, related to D,. Manipulating Maxwell’s equations

(3) yields (¢ =1)
kXkXE+ e (E)E=0.

This medium admits transversal waves for which the wave
equation becomes

[k? — wueu(E)| E=0. (21)

Hence, the expression in brackets is the dispersion equa-
tion (18).

The main difficulty in proceeding to analyze the present
problem is that, unlike the linear case, the representation of
the total field as a superposition of plane waves requires
justification. In general, superposition is not valid in non-
linear media. However, in weakly nonlinear systems as
discussed here, it appears plausible to assume that only
phase-matched nonlinear induced harmonics will be pro-
duced with significant efficiency. This implies that in
isotropic media as considered here, the interaction of non-
colinear waves will be negligible. This heuristic assumption,
still requiring experimental support, salvages the linear
method of superposition to the extent that new solutions
may be constructed from sums of plane waves which are
not phase matched.

Accordingly, we take the formulas for rectangular wave-
guides, e.g., as given by Collin [21], recast them in terms of
plane waves, and replace k, w with gk, qw, respectively, to
obtain the harmonics. Thus, the fields are given by

Field TE ™
H, CCe 0
E, 0 S.S,e
E.  Zyunt, AC.S,e (22)
E, —Z,..H., BSCe
H, —ASCe —-E,/Z,,,
H,  —-BCSe E/Z ,.
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where in the above shorthand notation C, = cos(gnwx /a),
and S, implies sine of the same argument, and C, =
cos(gmmy/b), and S, follows; a and b are the dimensions
of the guide in the x and y directions, respectively, g is the
number of the harmonics, e denotes e'%#mm?~i4“! where
gB,,. is the pertinent component of gk in the z-direction,
A denotes iB,, nm/ak?,, and for B replace n/a with

m/b, k2,,=(nm/a)* +(mn/b)? and B,,=k>*— k2.
The impedances are given by Z, , . =kZ,/B,,..Z, ,n=
B.mZo/k, and Z,=wp/k, and, for the present case in
particular, Z,= p /e (E), displaying the dependence on
the amplitude of the first harmonic.

The following characteristics of the nonlinear problem
are therefore apparent from (22): since nonlinearity pro-
duces harmonics, the fields of the fundamental mode n, m
appear together with harmonic modes (i.e., at frequencies
qw) gn, gm. Since phase matching is built into the model
from the outset, all these modes propagate with identical
phase and group velocities. Any attempt to change the
balance of harmonics, e.g., to filter out some harmonic or
to add a wave at a certain harmonic frequency, results in a
change of the parameters €™ in (10); hence, there is a
reshuffling of the whole spectral content of the wave. To
deal with €, which are susceptible to these changes, is the
price we have to pay for simplifying the nonlinear model
from (8) to (9). The second main result is the dependence
of parameters on €.;(E); hence, the amplitude of the
excitation affects the wavelength, impedances, etc. It is
therefore possible to regulate certain parameters, e.g., cutoff
frequencies, by changing the amplitude. This property is
usually referred to in nonlinear optics as nonlinearity-
induced transparency.

Waveguides containing nonlinear media as part of their
structure can be analyzed by the above formalism. Con-
versely, nonlinear media can be analyzed by inserting them
into waveguide systems.

The extension of (22) to rectangular resonators is quite
straightforward. To the waves in (22), add (with proper
signs) backward propagating waves such that metallic
boundary conditions will be satisfied at z =0, d. Normal-

ized formulas have the form
Field TE ™
H, CCS.e 0
E, 0 S.S,Ce
E, = Z, .mBCS,S,e IAC.S,S,e (23)
E, Z, mASC,S.e iBS,C,S.e
H, iA S.CCe - BS,CCe/Z, ym
H, iBC, S Ce ACSCe/Z, um

where e stands for e 7" and S, =sin(glwz/d), C,=
cos(glnz/d), 1=1,2,3, - - - . Each of the plane waves con-
tained in (23), which can be explicitly obtained by recast-
ing the sin and cos as functions in exponentials, has k
vector components k,=+tnw/a, k,=tma/b, k,=
+ [w/d with the appropriate sign. Hence, we are dealing
with eight non-codirectional waves that can be superposed,
since they are not phase matched. Hence, the dispersion
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relation (18) can be written as

(H_ mm 7
a ) b » d ,wa
which is amplitude dependent. Consequently, the reso-

nance frequency is also amplitude dependent. This is the
key to measuring

Eeff(E)=k2/(H""’2)- (25)
For small amplitudes, the nonlinear effect is negligible. As
the power increases, the nonlinear correction terms will

start to play a role and can be computed from the change
in the resonance frequency.

A) =0 (24)

IV. CIRCULAR CYLINDRICAL STRUCTURES

It will be shown that this class of canonical problems is
not merely a complicated mathematical extension of the

_rectangular case, in which Bessel functions replace the

trigonometric expressions. In fact, if we adopt the general
theory given above, then we find that curved metallic
structures, as opposed to rectangular geometries, will usu-
ally suppress phase matching, and consequently also sup-
press coherent nonlinear interaction.

The general treatment of linear vector waves is given by
Stratton [22], who cites original work by Hansen. For
completeness, and since the subject is mathematically more
complicated than the rectangular case, the general theory is
summarized. The general expressions for nonsingular fields
in cylindrical coordinates [22, see p. 361] is

Field ™ TE
E, ihXa,dy,/dr ~pw/rlnby,
E, (—h/r)Ena,y, — iwpXb, 0y, /or
E, NZa, ¥, 0
H, (k*/pwr)Lna,, ih¥h, 0,/ dr
H, (ik*/pw)La,dy,/dr (—h/r)Inby,
H, 0 NXb,
(26)
where
¥, = e (Ar)ethz—ior, (27)

In denoting the nonsingular Bessel functions and A> = k?
— h?, the summation extends on —oo<n<co and a,, b,

are coefficients. The structure (26) and (27) can be split
into even and odd parts by defining

¢en = {cosn(b}Jn(Ar)eth—iwt'

° sin n¢

(28)

In order to express (26) in terms of (28), note that in in
(26) corresponds to d/d¢, and apply this operator to (28)
(see Stratton [22, p. 395]). The orthogonal vector wave
functions M and N are defined in Stratton [22, p. 392 ff.]

M, =(Vy,)XZ v XM,=kN,
v X N, =kM,. (29)
The TE E field in (26) is recognized as iwp).h,M,, and the
mate H field corresponds to kb N,; the TM H field is

n-'n’

recognized as (—ik?%/pe)La,M, and the mate E field is
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given by (kw/e)Xa,N,. Relevant to our subject is the
representation of M and N in terms of sums {integrals) of
plane waves

M

n

— i fzw(lk X2)el)\rcos(ﬁ——¢>)+m/3+zhzfzwt d,B
27 0

n

i7" o2 o _ .
N = 2_/ '”(kz,: _ hk)ez}\rcos(ﬁ ) +inB+ihz lwtd,B.
T Jo

(30)

(See Stratton [22, pp. 396, 397)).

Thus far the linear problem has been summarized. Strictly
speaking, the nonlinear problem does not admit superposi-
tion of plane waves. However, making the same assump-
tion as before, that it is legitimate to superpose waves
which are not phase matched, structures like (30) are
admissible. But exactly this argumentation also leads to the
prediction that the significance of nonlinear interaction
will be very small, since for each amplitude ik X ze""® or
(k% — hk)e™®, the nonlinear dispersion equation (18) yields
a different value for k, and in the absence of some con-
certed effort of all the plane waves in the integrand (30),
the effect of nonlinearity will be negligible. One way of
dealing with this difficulty is to assume the presence of
many modes, and let the amplitudes affect the dispersion
equation such that a combined coherent effect will emerge.
Thus, we define the E field corresponding to (30) as

1 27
___f dﬁel}\rcos(qub)Jrlh:*zth(B)
0

7 (31)
where E(B) =X, E, (B)e"* stands for a sum of amplitudes
of various modes. Assuming again the isotropic medium as
in (19) and (21) prescribes
A 27 Arcos(B—g)+ihi—rwtf 12 2 )

5 ). ape {(KE(B)~ wucE(B)
— W uc@E(B)E(B) - wueVE (B)E(B)— -+ } = 0.
(32)
What we are trying to do now is to find conditions for the
vanishing of the expression in braces in (32) for all 8. For
simplicity, let us assume first that only € and €? are

nonzero. The condition for the vanishing of the braces in
(32) for all B8 prescribes

(k2 = ) T e — e b by et 8 =0
n n n”

(33)

for the TE field, for example. Hence, using the orthogonal-
ity of e'™F, (33) yields

(k% — o’pe®)b, — wue?® Y,

w+n'=n

b/bu=0.

n n (34)
For each n, an equation of the type (34) is obtained, and
since all factors except k are given beforehand, each equa-
tion yields a value k. Since A is determined by boundary
conditions, (34) in general means that different k, are
associated with different 4,; hence, our assumption (31)
(with one 4 applying to all modes n) is invalid. Still, our
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argument may be applied as an approximation. If, for
€? =0, a value h, is computed, then the nonlinear effect is

Ah,=h,—h,. (35)
If Ah, is small compared to 4, then the phase mismatch
e’/ will be negligible for some range of z, for which 4 in

(31) can be replaced by A,. Naturally, this means that for
high-order modes, where / is getting smaller compared to
A, the approximation is increasingly improved. This is to
be expected, because for higher modes, corresponding to
larger arguments in the Bessel functions, the asymptotic
representation of the Bessel functions constitutes a good
approximation. This is tantamount to saying that as A
increases, the waves become more and more similar to
plane waves. The above argument shows the interaction of
modes, which also means that if one mode »n is injected
into the system, then powers of e'*# will produce higher
modes, whose amplitudes contain the nonlinear €™ as
factors. Subject to the restrictions mentioned above, the
field in circular cylindrical waveguides can be represented
by (27) and (28) with the proper modifications, i.e., A4, k,
are replaced by #£,.k,, obtained from (34) and the
boundary condition on A, according to k2= A? + A2, Simi-
larly to the previous case of rectangular cavities, here too
the resonance frequency of a cylindrical cavity will depend
on the amplitude of the injected signal. For this case, 4 is
determined by the length z of the cavity, and the only
degree of freedom is offered by w. If only one mode is
present, which we can represent by + n, |b,|=1b_,} then
the same argument that led to (34) now yields, for €®, a
relation of the form

(k? — w2ueM)b, — w2ue?3b> =0

(36)

which is somewhat oversimplified, but shows the depen-
dence of w, on the amplitude, represented here by b, .

Thus far only the fundamental frequency has been con-
sidered. Inasmuch as we were able to recast the fields in
plane-wave integrals, it is clear that for frequency gw we
will not have gk (i.e., g\ and ¢k) to maintain the phase-
matching requirement. However, if the boundary condi-
tions prescribe J,(Aa)=0 or (d/da)J (Aa)=0, for TM
and TE modes, respectively, for a guide of radius r =aq,
then in general J,(gqAa), (d/da)J,(gAa) will not vanish
due to the fact that the zeros of the functions are not
evenly spaced. This means that harmonic production is
suppressed in cylindrical waveguides and cavities. For
high-order modes, the zeros become increasingly evenly
spaced, because the waves resemble more and more plane
waves. Hence, for large Aa, the harmonic waves will be
present.

V. SPHERICAL STRUCTURES

At this stage, where a lot of experimentation is needed to
check the fundamentals of the theory, there is no point in
bringing in all the heavy machinery for the scalar and
vector spherical wave functions. These are comprehensively
covered by Stratton [22, see ch. 7]. The ideas are identical,
and therefore we expect the same conclusions. The repre-
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sentation of spherical vector waves in terms of plane-wave
integrals [22, pp. 416, 417}, and the application of disper-
sion equations similar to (33) and (34) will lead to the
results of k,,, for mode n,m which constitutes an ap-
proximate solution, increasingly improving as » increases
(on account of the spherical Bessel functions behavior for
large arguments). The conclusions for the behavior of
harmonics follows the same lines.

V. SuMMARY AND CONCLUSIONS

The problem of nonlinear wave propagation is extremely
complicated, physically and mathematically. The present
study concentrates on weak nonlinear effects which pro-
vide the correction terms for the leading linear results. This
is described mathematically by a model based on the
Volterra series, and plane-wave dispersion relations are
obtained by assuming periodic solutions. This theory is
briefly recapitulated. Applications to rectangular wave-
guides and cavities are given. This problem is easy because
the linear fields are given as combinations of a few (at most
eight, for the fully developed case of a rectangular cavity)
plane waves. Once the stipulation is made that nonphase-
matched waves do not interact, the extension to the nonlin-
ear case is straightforward. Results are given, and practical
aspects of analyzing nonlinear devices, or measuring the
properties of nonlinear media, are discussed.

The presence of curved metallic boundaries is shown to
‘suppress nonlinear interaction and harmonic production.
This effect is increasingly pronounced as the waves depart
more and more from plane waves, i.e., when the curvature
of wavefronts increases. Cylindrical waves are considered
in some detail, the treatment for spherical structures is only
delineated, but the above conclusions seem to be valid in
general.

There are many heuristic assumptions in the basic the-
ory, and experimental data is necessary to check its valid-

1ty.
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